

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 100)$	$\%$	
A	+	$\%$	$\%$
B	+	$\%$	$\%$
C	+	$\%$	$\%$
D	+	$\%$	$\%$
No award	$<$	$<\%$	$\%$

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	125	175	No Assignment in 2023

9b	150	$\left.\begin{array}{rcl}1 \mathrm{~g} \text { biscuit } & \text { releases } & 20.9 \mathrm{~kJ} \\ 30 \mathrm{~g} \text { biscuit } \\ \text { releases } & & 20.9 \mathrm{~kJ} \times 30 / 1 \\ = & & 627 \mathrm{~kJ}\end{array}\right]$ 4.18 kJ equals									
10a(i)	electrolysis	As caesium is more reactive than potassium then electrolysis would be the method to extract caesium from its ore.									
		Method Metals Made This Way	Electrolysis		Heat With Carben		Heat Alone				
			Potassium	Sodium	Zinc	Iron	Mercury	Silver			
			Lithium	Calcium	Nickel	Tin	Mercury	Platinum			
			Magnesium	Aluminium	Lead	Copper	Gold	Platinum			
		Reason most reactive metals			medium reactive metals		least reactive metals				
10a(ii)	Reduction	Metal ores contain metal ions which are reduced to produce metal atoms$\mathrm{Cs}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cs}$									
10b(i)	${ }_{-1}^{0} e$	Particle Proton Symbol ${ }_{1}^{1} \mathrm{P}$ 		Neutron ${ }_{0}^{1} n$	${ }^{\text {Electron }}$		Alpha	Beta			
							${ }_{-1}^{0} e$				
10 b (ii)	Alpha particles cannot pass through paper	Radiation	Alpha		Beta		Gamma				
		Mass	4		0		No mass				
		Charge	2		-1		No charge				
		Stopped by	Paper		Aluminium		Thick lead				
		Deflection	Towards negative		Towards positive		No defection				
		Use	Smoke detectors		Measuring thickness of paper in paper mill		Radiotherapy cancer treatment				
10b(iii)A	One answer from:	Time taken for half the atoms in a sample to radioactively decay			Time for the radioactivity in. a sample to half						
$10 b$ (iii)B	15	Time \quad No. of half-lives			Fraction Remaining		$\text { \% Remaining }=1 / 16$$\% \text { Decayed }=1-1 / 1$				
		0 years	0	1	(100\%)						
		$\begin{array}{\|l\|} \hline 30 \text { years } \\ \hline 60 \text { years } \\ \hline \end{array}$	1	$1 / 2$	(50\%)(25%)	$\begin{aligned} \% \text { Decayed } & =1-1 / 16 \\ & =15 / 16 \end{aligned}$					
			2	$1 / 4$		\% Remaining $=6.25 \%$\% Decayed $=100 \%-6.25 \%$					
		$\begin{array}{\|l\|} \hline 60 \text { years } \\ \hline 90 \text { years } \\ \hline \end{array}$	3	$1 / 8$	(125\%)						
		120 years	4	$1 / 16$	(6.25\%)	Decayed $\begin{aligned} & =100 \%-6.25 \\ & =93.75 \%\end{aligned}$					
11a	\square	Tungsten is a metal. Metals and non-metal compounds usually form ionic compounds. All ionic compounds are solid at room temperature. Tungsten(VI) fluoride is a gas at room temperature and this means that tungsten(VI) fluoride must be covalent molecular.									
11b(i)	$\mathrm{WF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{WO}_{3}+6 \mathrm{HF}$	$\mathrm{WF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{WO}_{3}+6 \mathrm{HF}$									
11b(ii)	concentration of hydrogen ions greater than concentration of hydroxide ions	Type ${ }^{\text {R }}$ Relationship between Concentration of Hydrogen ions and Hydroxide Ions									
		Type Relationship between Concentration of Hydrogen ions and Hydroxide Ions acid Concentration of hydrogen ions greater than Concentration of hydroxide ions									
		neutral Concentration of hydrogen ions equal to Concentration of hydroxide ions									
11c	$\mathrm{W}^{6+}+2 \mathrm{e}^{-} \rightarrow \mathrm{W}^{4+}$	When balancing an ion-electron equation, adding electrons will balance the charge by adding to the most positive side of the equation.									
	Open Question:	3 mark answer		2 mark answer			1 mark answer				
12		Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a involved and the application of these to respond to the problem.		Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.			Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				

