Past Papers Nat 5 Chemistry ## 2023 Marking Scheme | Grade | Mark R | equired | % condidated cabinating and | |----------|--------|---------|------------------------------| | Awarded | (/100) | % | % candidates achieving grade | | Α | + | % | % | | В | + | % | % | | С | + | % | % | | D | + | % | % | | No award | < | ٠% | % | | Section: | Multiple Choice | Extended Answer | Assignment | |---------------|-----------------|-----------------|-----------------------| | Average Mark: | /25 | /75 | No Assignment in 2023 | | 20 | 023 | Nation | al 5 | C | hemistr | Ϋ́ | Mark | king | Sc | heme | | |----------|--------|--|--|---|--|--|---|------------------------|----------------------------|--|--| | MC
Qu | Answer | Reasoning | | | | | | | | | | | 1 | D | | Rate = $\frac{\Delta \text{Quantity}}{\Delta \text{Time}} = \frac{300 \text{ cm}^3}{60 \text{ s}} = 5 \text{ cm}^3 \text{ s}^{-1}$ | | | | | | | | | | 2 | Α | | Partion protoneutr | ton inside nucleus
tron inside nucleus | | | Charge
+1
0
-1 | 1 0 | ass
amu
amu
rox 0 | | | | 3 | С | A CC 4 C C C C | | | B NCl3 Numcl Cl cl | C
SCl₂
S | Cl | D
FCI
F | | | | | 4 | В | ⊠A Diagram sh
☑B Diagram sh
☑C Diagram sh | nows met
nows ionio
nows covo | allic b
c bond
alent m | mpound has metal
onding (positive ion
ing (positive ions al
nolecular (separate
network (long netw | ns sur
nd neg
mole | rrounded by c
gative ions)
ecules with co | delocalis
ovalent b | | | | | 5 | В | Fe Consideration of Con |)
2
Se = 2 | | Fe P 3 3 FeP ency of Fe = 3 | va | Fe N
2
Fe(NO ₃)2
lency of Fe | | F | PO ₄ ³⁻ 2 3 $e_3(PO_4)_2$ cy of Fe = 2 | | | 6 | D | Solution \Rightarrow value v | | | | | | | | | | | 7 | В | ☑A aluminium oxide is insoluble ☑B barium oxide is a soluble metal oxide ☑C nitrogen oxide is a non-metal oxide ☑ dissolves in water to form pH<7 ☑ D hydrogen oxide H₂O is water with a pH=7 ∴ does not change pH of water when added | | | | | | | | | | | 8 | С | ⊠B nickel does
☑C nickel sulfo | de + s
+ s
roxide do
: not prod
ate is pro | sulfuri
sulfuri
bes not
duce a
oduced | c acid — → ni | ckel
ckel
hen r
d with
tions | h sulfuric ac | sulfuri
cid | r
ien
ic acid | carbon dioxide | | | 9 | В | $(Na^{+})_{2}CO_{3}^{2-}(aq) + 2H^{+}CI^{-}(aq) \rightarrow 2Na^{+}CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ Split solutions into ions $2Na^{+}(aq) + CO_{3}^{-}(aq) + 2H^{+}(aq) + 2CI^{-}(aq) \rightarrow 2Na^{+}(aq) + 2CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ $Identify \ Spectator \ Ions \ and \ cancel \ out \ Spectator \ Ions$ $2Na^{+}(aq) + CO_{3}^{-}(aq) + 2H^{+}(aq) + 2CI^{-}(aq) \rightarrow 2Na^{+}(aq) + 2CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ $Re-write \ equation \ without \ spectator \ ions$ $CO_{3}^{-}(aq) + 2H^{+}(aq) \rightarrow H_{2}O(l) + CO_{2}(g)$ $Carbon \ number: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | | | | | | | |----|---|--|--|--|--|--|--|--|--|--| | 10 | Α | $\begin{array}{c} \text{CH}_3\text{CH}(\text{CH}_3)\text{CH}_2\text{C}(\text{CH}_3)_2\text{CH}_3 \\ \uparrow \\ 1x \text{ methyl group} \\ \text{ on } C_4 \\ \end{array}$ $\begin{array}{c} \uparrow \\ 2x \text{ methyl group} \\ \text{ on } C_2 \\ \end{array}$ Name of compound: 2,2,4-trimethylpentane} \\ \text{NB: Overall formula is of alkane as formula } C_8\text{H}_{18} \text{ fits general formula } C_n\text{H}_{2n+2} \\ \end{array} | | | | | | | | | | 11 | C | \blacksquare A This structure is also 2-methylbut-2-ene but drawn differently \blacksquare B This structure has formula C_5H_{12} but 2-methylbut-2-ene has formula C_5H_{10} \blacksquare C Both have formula C_5H_{10} and have different structures \therefore isomers \blacksquare D This structure has formula C_6H_{12} but 2-methylbut-2-ene has formula C_5H_{10} | | | | | | | | | | 12 | В | \boxtimes A Addition of H ₂ across the C=C double bond in but-2-ene produces butane C_4 H ₁₀ \boxtimes B Butan-1-ol cannot be produced as -OH group must be added to C_2 to form butan-2-ol \boxtimes C Addition of H ₂ O across the C=C double bond in but-2-ene produces butan-2-ol \boxtimes D Addition of Br ₂ across the C=C double bond in but-2-ene produces 2,3-dibromobutane | | | | | | | | | | 13 | A | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | 14 | ۵ | \blacksquare A methanol CH ₃ OH has a lower formula mass compared to octan-1-ol C_8 H ₁₇ OH \blacksquare B CH ₃ OH has a higher solubility than C_8 H ₁₇ OH as methanol has a shorter carbon chain \blacksquare C methanol CH ₃ OH has a lower formula mass compared to octan-1-ol C_8 H ₁₇ OH \blacksquare D methanol CH ₃ OH has a lower formula mass and higher solubility than octan-1-ol C_8 H ₁₇ OH | | | | | | | | | | 15 | D | | | | | | | | | | | 16 | C | Acid + Metal Oxide → Salt + Water methanoic acid + sodium oxide → sodium methanoate + water | | | | | | | | | | 17 | A | ☑A conducts as solid and liquid ☑B does not conduct as solid or liquid and has low m.pt. and b.pt. ∴ covalent molecular ☑C conducts as liquid but not solid ☑D does not conduct as solid or liquid and has high m.pt. ∴ covalent network | | | | | | | | | | 18 | В | ☑ A Y is least reactive as it is only metal not to react with acid. (Least reactive comes first in list) ☑ B Y is least reactive and Z is most reactive ∴ Y then X then Z ☑ C Z is most reactive as it is only metal to react with water. (Most reactive comes last in list) ☑ D Z is most reactive as it is only metal to react with water. (Most reactive comes last in list) | | | | | | | | | ©JABchem 2023 3 2023 Nat5 Marking Scheme | 19 | D | ☑A Nickel(A) is lower than zinc(B) in Electrochemical series so electrons flow from B to A ☑B Zinc(A) is lower than aluminium(B) in Electrochemical series so electrons flow from B to A ☑C Aluminium(A) is lower than magnesium(B) in Electrochemical series so electrons flow from B to A ☑D Aluminium(A) is higher than nickel(B) in Electrochemical series so electrons flow from A to B | | | | | | | | | | |----|---|---|---|--|---|-----------------------------------|--|--------------------------------|--|--|--| | 20 | A | Mg ²⁺ ions and | I Ag⁺ ions will of Oxidation Reduction Oxidation | Mg(s) 2Ag ⁺ (aq) + | silver atoms | s in a redox r | eacti | on.
-
- | | | | | 21 | C | Process Haber Ostwald | Nitrogen | tants
+ Hydrogen
a + oxygen | A
Ni | mmonia tric acid | | Catalyst Iron Platinum | | | | | 22 | С | ²²⁷ Th - | → 223 Ra | → 219
86 R | $an \stackrel{\alpha}{\longrightarrow}$ | ²¹⁵ ₈₄ Po — | $\stackrel{\alpha}{\longrightarrow}$ 2 | ¹¹ ₃₂ Pb | | | | | 23 | C | ⊠B Lead(II) s
☑C Calcium ch | ☑A Barium sulfate is insoluble and can be collected in a precipitation reaction by filtration ☑B Lead(II) sulfate is insoluble and can be collected in a precipitation reaction by filtration ☑C Calcium chloride is soluble so will not form a precipitate ☑D Silver Chloride is insoluble and can be collected in a precipitation reaction by filtration | | | | | | | | | | 24 | A | ⊠B Starch is
⊠C Flame tes | ☑A Glucose gives blue to orange with Benedict's and sodium chloride gives yellow flame test ☑B Starch is not present as there was no change in the iodine test ☑C Flame test gave yellow flame but strontium chloride would give a red flame test result ☑D Starch is not present as there was no change in the iodine test | | | | | | | | | | 25 | В | | 2NaOH
2mol
0.004mol | + H ₂ SO ₄
1mol
0.002mol | → Na ₂ ; | 5O ₄ + 21 | H ₂ C |) | | | | | 202 | 3 Nationa | 15 C | he | mis | str | y | Ma | rki | ng | 5 | che | zm | e | |-----------------|---|---|--|----------------------------------|-------------------------------|----------------|----------------|----------|---------|-------------------|----------|--------------|----------------------| | Long Qu | Answer | | Reasoning | | | | | | | | | | | | 1a | 7 | Diatomic Elen
Formula | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | 1b | 35 | Chlorine 3 | 5 is th | ie comm | on isoto | pe in | sample | as the | avera | ge is cl | loser to | 35 tl | han 37 | | 1c | One from: Fluorine Bromine Iodine Astatine | | Elements in the same chemical group have similar chemical properties due to having the same number of outer electrons. | | | | | | | | | | having | | 1d | 10 | ²⁴ Mg | No. of protons = atomic number = 1 No of neutrons = mass number - atomic number = $24 - 12 = 1$ No of electrons = atomic number - charge = $12 - (2) = 1$ | | | | | | | | | = 10 | | | 10 | 20 | ³⁷ Cl- | ı | No. of p
No of ne
No of el | eutrons | = ma | ss numl | oer – at | | | | | = 17
= 20
= 18 | | 2a | Hydrocarbon | A hydroca | rbons | is a com | pounds | conto | aining c | arbon a | nd hy | drogen | only. | | | | 2b(i) | Hydrogen | | | | C ₂ H ₆ | ₅ — | → C | 2H4 | + + | 12 | | | | | 2b(ii) | decolourises
bromine solution | Unsaturate
Bromine ad | dds acı | ross the | double | bono | d in eth | ene to | form 1 | ,2-dibr | | nane | | | 2c(i) | $H-C\equiv C-H$ | Carbon has
Hydrogen | | • | | | | • | | | atom | | | | 2c(ii)A | carbon dioxide
and water | Ethyne is a hydrocarbon containing only carbon and hydrogen atoms. Complete combustion of carbon produced carbon dioxide. Complete combustion of hydrogen produced water. | | | | | | | | | | | | | 2c(ii)B | Gives out heat | Exothermi
Endotherm | | | | | | - | • | | | | _ | | 3a | Group 2 | Only Group
The remain | | | | • | • | | | | | • | gen. | | | | | Writ | e down Sy
I valency b | mbols | Cro | | arrows | Work | out chem | | ıla | | | 3b(i) | KMnO ₄ | | K
1 | Mn | O ₄ - | K
1 | M | nO4
1 | | K r | 104 | | | | | | Observo | ition | | nding
e light | | Brigh
light | | | d glow
ew spar | alec | Dul
red g | | | 3b(ii) | Aluminium | Meta | | Magr | nesium | | X | • | | ron . | N3 | Сорр | er | | 3 D (II) | or zinc | Reactive Conclusion ∴ 2 possib | : X mu | st have | | | | Magnes | sium ai | nd Iror | 1 | → Lo | W | | 3c | Hydrogen | Gas Hydrogen Oxygen Carbon Dioxid | | | | | | | | | | | | | 3d(i) | Burns with a pop Voltage between 0.5 and 2.7 | As Iron is an iron/coptin/copper | betwe | _ | nesium a | nd ti | n on th | | rocher | nical se | | ne vol | tage of | | S (7/::) | Electrically conducting solutions containing ions | An electro | lyte is | | | ng so | lution v | vhich co | mplet | es the | circuit | in a c | ell and | | | | | | | | | | | I | | | | |------------|---|---|---|---------------------------------|---|---------|--|---|---------------------|---|--|--| | 3d(iii) | one answer from: | Il temperature I concentration I '' | | | Type o | | Distance between Surface are electrodes of electrode | | | | | | | 4a | From air | Problem Solving: Extracting information from a passage | | | | | | | | | | | | 4b | Lowers temperature or don't get used up | • • | A catalyst speeds up a chemical reaction but does not get used up in the reaction.
This often means that a chemical reaction can proceed at a lower temperature. | | | | | | | | | | | 4 c | 534.1 | 1 litre jet fuel made from 4700g CO_2
5 litres jet fuel made from 5x4700g CO_2 = 23500g CO
gfm CO_2 = (1x12)+(2x16) = 12+32 = 44g
no. of mol= $\frac{\text{mass}}{\text{gfm}}$ = $\frac{23500}{44}$ = 534.1mol | | | | | | | | | | | | | | 3 mark o | answer | | 2 mark a | nswer | | 1 m | ark ansv | ver | | | | 5 | Open Question: | Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a to 1 | | | Demonstrates a <u>reasonable</u> Inderstanding of the chemistry Involved, making some Itatement(s) which are relevant To the situation, showing that the Iroblem is understood. | | | Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. | | | | | | 6a(i) | carboxyl group | | O O O O O O O O O O | | | | | | | | | | | 6a(ii) | Addition
Polymerisation | C=C double bonds in monomer open up and join together to form polymer | | | | | | | | | | | | 6a(iii) | Polymer diagram: | СООН < | | | | | | | COOH C- J Q Unit | | | | | 6b(i) | CsCl and Material A | Problem Solving | g: Prediction | of va | lue and cor | npletio | n of b | oar graph | | | | | | 6b(ii) | Bar bigger than 18 and lower than 32 | As strontium is
for SrCl2 would | | | | | | n group 2, | the prec | liction | | | | 6c(i) | measuring cylinder or pipette | Beakers are loof liquid. Pipe volumes. | | | | | | | _ | | | | | 6c(ii) | Line Graph Showing: | araph which | ark is the axis/axes of the graph has/have suitable scale(s). which points rather least half of the width and half of the height of the | | | | ark xes of graph live able s and lits. | 1 mark All data points plotted accurately (within a half be tolerance) with either a li of best fit drawn or plots joined by curve. This mark can only be accessed if lir scales for both axes have been provided. | | half box
er a line
plots
s mark
l if linear | | | | 7a | Trisilane | Prefix Mon | o- Di- | Tr | | | nta- | Hexa- | Hepta- | Octa- | | | | 7b | Si ₅ H ₁₂ | Meaning 1
 General Formul
 For pentasilane | a of silanes
, n=5 ∴ 2n+2 | is Si _n l
2 = (2) | 1 _{2n+2} in line | with a | alkane | s C _n H _{2n+2} | / | 0 | | | | | | Compound Monosilane Disilane Trisilane Tetrasilane Pentasilane Hexasilane | | | | | | | | | | |-----------------|--|---|--|--|--|--|--|--|--|--|--| | | | Formula SiH ₄ Si ₂ H ₆ Si ₃ H ₈ Si ₄ H ₁₀ Si ₅ H ₁₂ Si ₆ H ₁₄ | | | | | | | | | | | 7c | 185 | Boiling Point (°C) -112 -15 53 108 153 - | | | | | | | | | | | , 0 | | Difference 97 68 55 45 (35) | | | | | | | | | | | | | Prediction (°C) - - - - 185 | | | | | | | | | | | 7d | One diagram from: | H Si H or H Si H | | | | | | | | | | | | | 1st Mark: pentasilane has stonger/larger forces of attraction. | | | | | | | | | | | 7e | Stronger intermolecular forces due to longer | 2 nd Mark: forces of attractions are intermolecular/between molecules | | | | | | | | | | | 16 | silicon chain | The longer the silicon chain, the greater the number of atoms within the molecule. Bigger molecules have stronger intermolecular bonds between | | | | | | | | | | | | | molecules which raises the boiling point of pentasilane over tetrasilane | | | | | | | | | | | | | gfm $SiO_2 = (1\times28)+(2\times16) = 28+32 = 60g$ | | | | | | | | | | | | | $\mathbf{no.} \text{ of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{6}{60} = 0.1 \text{mol}$ | | | | | | | | | | | | 3.1 | 744 00:0 441:0 0:11 7:10 | | | | | | | | | | | 7f | | $7Mg + 2SiO_2 + 14HCl \longrightarrow Si_2H_6 + 7MgCl_2 + 4H_2O$ | | | | | | | | | | | | | 2mol 1mol 0,1mol 0,05mol | | | | | | | | | | | | | gfm Si ₂ H ₆ = (2×28)+(6×1) = 56+6 = 62g | | | | | | | | | | | | | m ass = n o. of mol × gfm = 0.05 mol × $62 = 3.1$ g | | | | | | | | | | | 8a | Fluorapatite | Problem Solving: extracting information from a passage | | | | | | | | | | | 8b | C ₆ H ₁₂ O | As there are no metals in the formula, any order of the non-metal elements is acceptable although most tend to list C then H then O. | | | | | | | | | | | 8c(i) | Nitrogen | ADP has the formula NH ₄ H ₂ PO ₄ contains nitrogen and phosphorus. Both are essential elements for plant growth. The 3rd essential element for plant growth is potassium. | | | | | | | | | | | 8c(ii) | Soluble | Fertilisers must contain at least one of the three essential elements nitrogen, phosphorus or potassium and be soluble in water. | | | | | | | | | | | 0.1 | 24.4 | gfm $H_3PO_4 = (3\times1)+(1\times31)+(4\times16) = 3+31+64 = 98g$ | | | | | | | | | | | 8d | 31.6 | % P = $\frac{\text{mass of P}}{\text{gfm}} \times 100 = \frac{31}{98} \times 100 = 31.6\%$ | | | | | | | | | | | 8e | Filtration | Solid calcium sulfate can be separated from a liquid by filtration. | | | | | | | | | | | 8f | ½mol or 0.5mol | $CaSO_4.2H_2O$ $CaSO_4.\frac{1}{2}H_2O$ $1mol:2mol$ $1mol:\frac{1}{2}mol$ | | | | | | | | | | | | | heat energy = specific heat capacity × mass × change in Temperature | | | | | | | | | | | | | $E_h = C \times m \times \Delta T$ | | | | | | | | | | | 9a(i) | 0.627 | $E_h = 4.18 \times 0.01 \times 15$ | | | | | | | | | | | | | $E_h = 0.627 \text{ kJ}$ | | | | | | | | | | | 0.5411 | 0.00 | No draft shield | | | | | | | | | | | 9 a (ii) | One from: | Glass absorbs heat Incomplete combustion | | | | | | | | | | | 9b | 150 | 1g biscu
30g biscu
4.18k
627 k | uit release
J equals
J equals | 25 20.
= 62
1 kilo
5 1 kilo
= 150 k | 9 kJ × ³⁰ / ₁
7 kJ
ocalorie
ocalorie × ⁶²⁷ / ₂
ilocalorie
ssium then electi | | would be | : the method | |-------------------|---|--|--|--|--|--------------------|--|--| | 10a(i) | electrolysis | to extract c Method Metals Mac This Way Reason | II Lithiim I | olysis
Sodium
Calcium
Aluminium | 1 | on
in
per | Mercu
Gold | | | 10a(ii) | Reduction | Metal ores o | | | $e^- ightarrow C$ | | netal ato | ms | | 10b(i) | °-1 | Particle
Symbol | Proton 1 p | Neutroi
1
0 | e Electron | | _{Ipha}
He | Beta
0
-1 | | 10b(ii) | Alpha particles
cannot pass
through paper | Radiation Mass Charge Stopped Deflecti | by Par | t
Der
negative | Beta 0 -1 Aluminium Towards positive Measuring thickness of paper in paper mil | | Gamma No mass No charge Thick lead No defection Radiotherapy cancer treatment | | | 10b(iii) <i>A</i> | One answer from: | | n for half the
radioactively | | | he rac | dioactivi | ty in. a | | 10b(iii)B | <u>15</u>
16 | Time 1 0 years 30 years 60 years 90 years 120 years | No. of half-lives 0 1 2 3 4 | Fraction R 1 1/2 1/4 1/8 1/16 | (100%) % Dec
(50%) (25%) % Rer | maining
cayed | = 1/ ₁₆
= 1 - 1/ ₁₆
= 15/ ₁₆
= 15/ ₁₆
= 6.25%
= 100% - 93.75% | | | 11a | covalent molecular | All ionic com
Tungsten(VI | pounds are soli | d at room t
gas at room | temperature and | · | | · | | 11b(i) | WF ₆ + $3H_2O \rightarrow WO_3 + 6HF$ | • | WF ₆ + | 3H ₂ O | → WO | 3 4 | + 6H | F | | 11b(ii) | concentration of hydrogen ions
greater than
concentration of hydroxide ions | acid Cond | | ogen ions gr
ogen ions | • | tration
tration | | ide ions
ide ions | | 11c | $W^{6+} + 2e^- \rightarrow W^{4+}$ | | ing an ion-elect | • | on, adding electr
the equation. | ons wil | l balance | the charge | | 12 | Open Question: | Demonstrates of understanding involved. A good the chemistry logically correct statement of the involved and the | k answer a good of the chemistry d comprehension of nas provided in a t, including a | 2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant 1 mar Demonstrates understanding involved. The a some statement some statement | | | | the chemistry idate has made which are uation, showing le of the |