

2023 Marking Scheme

Grade	Mark R	equired	- ° candidatas achievina anada						
Awarded	(/100)	%	% canalaares	achieving grade					
A	69+	69%	4	2.5%					
В	57+	57%	2	0.3%					
С	46+	46%	1	5.1%					
D	34+	34%	1	12.2%					
No award	<34	< 34%	ç	9.9%					
Section:	Multiple	Choice	Extended Answer	Assignment					
Average Mark:	16	0.1 /25	46.0 /75	No Assignment in 2023					

2	02	23	Nation	al 5	i C	hemis	try	Marl	king	Sc	he	me	
MC Qu	Answer	% Correct		Reasoning									
1	D	62		Rate = $\frac{\Delta Quantity}{\Delta Time}$ = $\frac{300 \text{ cm}^3}{60 \text{ s}}$ = 5 cm ³ s ⁻¹									
				Parti	icle	Locat	ion	Charge	M	ass			
2		02		prot	on	inside nu	icleus	+1	1	amu			
2	A	92		neuti	ron	inside nu	icleus	0	1	amu			
				elect	ron	outside n	ucleus	-1	арр	rox O			
			A			В		С			D		
			CCl ₄			NCl₃		SCl ₂			FCI		
			Cl										
						Nu.		-					
3	С	80			CI-					F		CI	
	_		C	19mC				CI	CI			CI	
						CI							
				Cl									
			tetrahed	ral	trig	onal pyrami	dal	angular			linear	n	
			Lithium Chlorid	e is ionid	c as co	mpound has	metal bo	onded to non-	metal.	1			
	-		Image: A Diagram shows metallic bonding (positive ions surrounded by delocalised electrons)										
4	В	58	⊠B Diagram sh ⊠C Diagram sh	ows ioni	c bond alent n	ling (positive i nolecular (cer	ions and r	negative ions) Necules with c	ovalant k	alent bonds inside molecule)			
			ED Diagram sh	IOWS COV	alent r	notecului (sej network (long	network	of covalent bo	onds)		JE MOR	ecule)	
			A			В		С			D		
			Fe (e O 🛛 Fe P				Fe N	Fe PO_4^{3-}		PO4 ³⁻		
5	R	52											
		02	2	2		3 3		2	1	2) -	3	
			FeO		FeP			Fe(NO ₃)	F	z₃(PO	4) 2		
			valency of F	² e = 2	vale	ency of Fe =	3 \	valency of F	e = 2	valen	cy of	Fe = 2	
			⊠Ano. of mol	= volume	e x c oi	ncentration	= 0.1litres	$\times 1.00_{mol}t^{-1} =$	0.1mol	mal			
6	D	71	Esno. of mol =	: volume : volume	x con	centration =	· 0.13litre: : 0.2litres	x 0.79moll ⁻¹ x 0.60moll ⁻¹	0.12m				
			⊠o no. of mol :	volume	e x c or	centration :	= 0.25litre	es × 0.25mol t ⁻¹ =	0.0625	imol			
			🗷 A aluminium o	oxide is	insolut	ole	∴ r	io change to	oH of w	ater			
7	В	54	B barium oxid	de is a so vide ia e	oluble	metal oxide	∴ c	lissolves in w	ater to	form alk	aline p .7	oH>7	
	_		No hydrogen ox	vide 15 a	non-m Oisw	etai oxiae ater with a p	∴c H=7∴c	loes not chan	атег то ae nH o	torm pH f water i	<br when a	ndded	
			nickel carbona	te + :	sulfuri	ic acid —	 nicke 	el sulfate +	wate	r + (carbor	n dioxide	
			nickel hydroxid	de + :	sulfuri	c acid —	 nicke 	el sulfate +	wate	r			
0		15	nickel	+ :	sulfuri	ic acid —	► nicke	el sulfate +	hydrog	jen			
Ō	C	40	R nickel hydr	oxide de	oes no duce c	t produce a g	as when	reacted with	n sultur cid	ic acid			
			■C nickel sulfa	ite is pro	oduced	d in all three	reaction	nn sun unic u IS					
 Image: Supple is produced in an image reactions Image: Supple is produced in an image reaction is a supple is produced in an image reactions Image: Supple is produced in an image reaction is produced in an image reactions Image: Supple is produced in an image reaction is produced in an image reactions Image: Supple is produced in an image reaction image r									ation r	reaction			

			(Na ⁺) ₂ CO ₃ ²⁻ (aq)	+ $2H^+Cl^{(aq)} \rightarrow 2$ Split solutions into io	$\operatorname{Na}^{+}Cl^{-}(\operatorname{aq})$ + $\operatorname{H}_{2}O(l)$ + $CO_{2(g)}$
0	•	50	2Na ⁺ (aq) + CO ₃ ⁻ (aq) +	+ $2H^+(aq)$ + $2CI^-(aq) \rightarrow 2Na^+$	$(aq) + 2CI^{-}(aq) + H_2O(1) + CO_2(g)$
9	В	59	$\frac{1}{2No^{+}(n)} + (O_{3}^{-}(n))$	$\begin{array}{rcl} \text{11} \text{11} \text{12} 1$	ut Spectator Lons $(a_1) + 2C + (a_2) + H_2O(1) + CO_2(a)$
				Re-write equation without spe	ctator ions
			CO3 ⁻ (aq)	+ $2H^{+}(aq) \rightarrow$	+ H ₂ O(l) + CO _{2(g)}
			Carbon number: 5	9 6 9	0
			CH-($(C \sqcup_{2})_{2} C \sqcup_{2}$
			Cr 130	r 1(0r 13)0r 120	(CF13)2CF13
				↑	\uparrow
10	Α	49		1x methyl group 2x m	ethyl group
				on C ₄	on C ₂
				· · · · · · · · · · · · · · · · · · ·	
			N	ame of compound: 2,2,4-trir	nethylpentane
			NB: Overall formul	a is of alk ane as formula C ₈ l	118 fits general formula CnH2n+2
			A This structure is a	lso 2-methylbut-2-ene but drawn	differently Change has formula C-Has
11	С	56	☑C Both have formula	C_5H_{10} and have different structu	res \therefore isomers
			🗷 D This structure has	formula C ₆ H ₁₂ but 2-methylbut-2	2-ene has formula C5H10
			⊠A Addition of H₂ acr	oss the C=C double bond in but-2-	ene produces butane C4H10
12	В	33	■ Butan-1-ol cannot b	be produced as -OH group must b	e added to C_2 to form butan-2-ol
	-		No. Addition of H2U ac	ross the C=C double bond in but- coss the C=C double bond in but-2	2-ene produces Dutan-2-01 2-ene produces 2 3-dibromobutane
				0	0
				Ĭ	
12	Δ	87	C C	+ C	$C_{1} + CO_{2} + H_{2}O_{2}$
15	/	07			
			H_5C_2	H HO C5H11 H50	C ₂ C ₅ H ₁₁
			■A methanol CH3OH h	as a lower formula mass compare	d to octan-1-ol CsH170H
11		20	■B CH3OH has a highe	r solubility than C ₈ H ₁₇ OH as metl	nanol has a shorter carbon chain
14	υ	00	⊠C methanol CH3OH h	as a lower formula mass compared	d to octan-1-ol C8H17OH
			☑D methanol CH ₃ OH h	as a lower formula mass and high	er solubility than octan-1-ol C ₈ H ₁₇ OH
			Chemistry General Formula	La fite Cultar a	Cyclobutane
15	D	78	Melting Point	-138°C	-90°C
	U		Solubility in water	insoluble in water	insoluble in water
			Saturation	Saturated (no C=C double bonds)	Saturated (no C=C double bonds)
16	C	69	Acid	+ Metal Oxide \rightarrow	Salt + Water
10	Ŭ	07	methanoic acid	d + sodium oxide → sodi	um methanoate + water
			☑A conducts as solid a	nd liquid	metallic bonding
17	Α	72	B does not conduct a	s solid or liquid and has low m.pt.	and b.pt covalent molecular
			E conducts as inquit in D does not conduct a	is solid or liquid and has high m.pt	. ∴ covalent network
			🗷 A Y is least reactive	as it is only metal not to react wi	th acid. (Least reactive comes first in list)
18	R	70	B Y is least reactive	and Z is most reactive Y then X	K then Z
	U		KCZ is most reactive	as it is only metal to react with w	ater. (Most reactive comes last in list)
			INALLY IS MOST PORCTIVE	as it is only metal to react with w	uler (Most reactive comes last in list)

19	D	86	⊠A Nickel(A) EB Zinc(A) is EC Aluminium(☑D Aluminium	is lower than zinc lower than alumin (A) is lower than r (A) is higher than	(B) in Electroche nium(B) in Electro nagnesium(B) in E nickel(B) in Elec	mical series s chemical serie Electrochemica trochemical se	o electrons fl es so electron I series so elec eries so electi	ow fro Is flow ctrons rons fl	m B to A from B to A flow from B to A ow from A to B
20	A	29	As Magnesiuı Mg²⁺ ions anc	m is higher up t l Ag⁺ ions will re Oxidation Reduction Oxidation Reduction x2 Redox	he electrochei educe back to s Mg(s) Ag ⁺ (aq) + Mg(s) 2Ag ⁺ (aq) + 2 Mg(s) + 2A	nical series. silver atoms e ⁻ -> e ⁻ -> g ⁺ (aq) ->	Magnesium in a redox r Mg ²⁺ (aq) + Ag(s) Mg ²⁺ (aq) + 2Ag(s) Mg ²⁺ (aq) +	will o reacti 2e 2e 2e	xidise into on. -
21	С	72	Process Haber	React Nitrogen +	tants Hydrogen	Pr An	oducts nmonia		Catalyst Iron
			Ostwald	Ammonia	+ oxygen	Nit (ul	ric acid timately)		Platinum
22	С	74	²²⁷ ₉₀ Th -	- ^α ²²³ 88 Ra	$\xrightarrow{\alpha} \frac{219}{86} \mathbf{R}$	$n \xrightarrow{\alpha} \frac{2}{8}$	¹⁵ ₃₄ Po —	$\stackrel{\alpha}{} 2$	¹¹ ₂ Pb
23	С	70	⊠A Barium su ⊠B Lead(II)s ☑C Calcium ch ☑D Silver Chl	lfate is insoluble sulfate is insolub nloride is soluble oride is insoluble	and can be colle le and can be co so will not form and can be colle	ected in a pre llected in a pr a precipitate ected in a pre	cipitation red recipitation r c cipitation re	action eactic action	by filtration n by filtration by filtration
24	A	80	☑A Glucose g ☑B Starch is ☑C Flame tes ☑D Starch is	ives blue to oran not present as tl t gave yellow flar not present as t	ge with Benedic [.] here was no chai ne but strontiur here was no cha	t's and sodium nge in the iod n chloride wo nge in the iod	n chloride giv ine test uld give a rec line test	es yel d flam	low flame test e test result
25	В	44		2NaOH + 2mol 0.004mol	- H ₂ SO ₄ - 1mol 0.002mol	→ Na2S	504 + 21	H₂C)

2023 National 5 Chemistry Marking Scheme											
Long Qu	Answer				26	easo	nir	١g			
1a	7	Diatomic Eler Formula	nent H	lydrogen Nitro H2 N	gen 2	Oxygen O2	Fluorin F2	ne (Chlorine Cl2	Bromine Br2	Iodine I2
1b	35	Chlorine 3	Chlorine 35 is the common isotope in sample as the average is closer to 35 than 37								
1c	One from: Fluorine Bromine Iodine Astatine	Elements i the same r	Iements in the same chemical group have similar chemical properties due to having he same number of outer electrons.								
1d	10 20	²⁴ Mg ³⁷ Cl ⁻	$ \begin{array}{c} & \text{No. of protons = atomic number} & = 12 \\ & \text{No of neutrons = mass number - atomic number} & = 24 - 12 = 12 \\ & \text{No of electrons = atomic number - charge} & = 12 - (2) = 10 \\ \hline & \text{No. of protons = atomic number} & = 17 \\ & \text{No of neutrons = mass number - atomic number} & = 37 - 17 & = 20 \\ & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & \text{No of electrons = atomic number - charge} & = 17 - (-1) & = 18 \\ \hline & No of electrons = atomic number $								
2a	Hydrocarbon	A hydroca	rbons	is a compound	ls co	ontaining c	arbon	and hy	drogen (only.	
2b(i)	Hydrogen			C2H	16	$\rightarrow C$	2 H 4	+ }	12		
2b(ii)	decolourises bromine solution	Unsaturato Bromine ad	Unsaturated compounds will decolourise bromine solution quickly. Bromine adds across the double bond in ethene to form 1,2-dibromoethane								
2c (i)	H–C≡C–H	Carbon has Hydrogen	Carbon has valency of 4 and makes four bonds per carbon atom Hydrogen has valency of 1 and make only one bond per hydrogen atom								
2c(ii)A	carbon dioxide and water	Ethyne is o Co Co	 Ethyne is a hydrocarbon containing only carbon and hydrogen atoms. Complete combustion of carbon produced carbon dioxide. Complete combustion of hydrogen produced water 								
2c(ii)B	Gives out heat	Exothermi Endotherm	c reac nic rea	tions are rea ctions are re	ctio acti	ns where ł ons where	neat is heat is	given s takei	out to th n in from	ne surro n the su	undings. rroundings
За	Group 2	Only Group The remain	os 2 co ning gr	ontains metals youps 3-0 all s	s on Star	ly. Group 1 t with a no	starts on-meta	with al at tl	the non- ne top ot	metal hy f the gr	ydrogen. oup
			Writ and	e down Symbols valency below		Cross-Over to work out	arrows formula	Wor (Can	k out chemi cel down if	cal formulo necessary)	
3b(i)	KMnO ₄		К 1	MnO ₄	-	к м 1	nO4 1	-	KMn	O ₄	
3b(ii)	Aluminium or zinc	ObservationBlinding white lightBright lightRed glow with few sparksDull red glowMetalMagnesiumXIronCopperReactivityHighLowConclusion: X must have reactivity between Magnesium and Iron							Dull ed glow Copper Low		
3c	Hydrogen Bunne with a par	Gas Test	H	ydrogen s with a pop		0x Relichts c	xygen alowing	y snlin	Co t Turne	arbon D	ioxide ter cloudy
3d(i)	Voltage between 0.5 and 2.7	As Iron is an iron/co tin/copper	betwe pper co	en magnesiun ell will be bet	n an wee	d tin on th n the volte	e elect age of	roche a magi	mical sen nesium/c	ries, the	e voltage of ell and a
3d(ii)	Electrically conducting solutions containing ions	An electrolyte is an ion containing solution which completes the circuit in a cell and allows electricity to flow.									

3d(iii)	one answer from:	temperature concentration		tion	Type o electro	of Distanc rode elec		ce between ctrodes	Surfact of elect	e area trodes	
4a	From air	Problem Solving: Extracting information from a passage									
4b	Lowers temperature or don't get used up	A catalyst speed This often mear	ds up a chen is that a che	nical r emical	eaction bi reaction	ut doe: can pro	s not g oceed o	et used uj at a lower	o in the r tempera	eaction. ture.	
4c	534.1	. litre jet fuel made from 4700g CO ₂ 5 litres jet fuel made from 5x4700g CO ₂ = 23500g CO gfm CO ₂ = (1x12)+(2x16) = 12+32 = 44g no. of mol= <u>mass</u> = <u>23500</u> 44 = 534.1mol									
		3 mark a	nswer		2 mark o	answei	•	1 m	ark ansv	ver	
5	Open Question:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of				asonable ne chemis ne are rele owing the bod.	stry vant at the	Demonstrat understandi involved. Th some statem relevant to that at leas chemistry w understood.	es a <u>limited</u> ng of the ch e candidate hent(s) which the situation t a little of t ithin the pro	emistry has made h are h, showing he blem is	
6a(i)	carboxyl group										
6a (ii)	Addition Polymerisation	C=C double bonds in monomer open up and join together to form polymer									
6a (iii)	Polymer diagram:	COOF H C=C H H Monomer	н н	с — С Н	ООН Н С Н П Роlym	COOF F C-C H F er	+ C + C-C + H	оон С—	H C H Repeatin	COOH C H g Unit	
6b(i)	CsCl and Material A	Problem Solving	: Prediction	of val	ue and co	mpletio	on of b	oar graph			
6b(ii)	Bar bigger than 18 and lower than 32	As strontium is for SrCl2 would	the metal b be between	etwee CaCl2	n calcium (18) and	and bo BaCl2 (arium ii 32).	n group 2,	the prec	liction	
6c (i)	measuring cylinder or pipette	Beakers are le of liquid. Pipet volumes.	ss accurat tes are th	e tha e mos	n measur † accura	ring cy te dev	linder vice fo	rs at mea or measur	suring vo ring exac	olumes ct	
6c(ii)	Line Graph Showing:	1 mark1 mark1 markOne mark is awarded for a graph which shows points plotted rather than bars.The axis/axes of the graph has/have suitable scale(s). • plotted points occupies at least half of the width and half of the height of the graph paper • The axes have suitableThe axes of the graph have suitable labels and units.All data points plott accurately (within a tolerance) with either suitable labels and units.						ed half box er a line plots s mark l if linear ; have			
7a	Trisilane	Prefix Mono	Di- Di-	Tri	- Tetr	ra- Pe	enta-	Hexa-	Hepta- 7	Octa-	
7b	Si ₅ H ₁₂	General Formula For pentasilane,	ı of silanes i n=5 ∴ 2n+2	3 s SinH ? = (2x . Pent	4 _{2n+2} in line :5)+2 = 12 asilane fo	e with rmula	o alkane: = Si5H:	5 CnH2n+2	/	0	

		Compound Monosila		Disilane	Trisilane	Tetrasilane	Pentasilane	Hexasilane			
		Formula	SiH₄	Si₂H₀	Si₃H ₈	Si ₄ H ₁₀	Si ₅ H ₁₂	Si ₆ H ₁₄			
7c	185	Boiling Point (°C)	-112	-15	53	108	153	-			
		Difference	9	7 6	8	55 4	5 (3	5)			
		Prediction (°C)	-	-	-	-	-	185			
7d	One diagram from:	H	H Si H	H	or	(HQ	H Si BH)			
		1 st Mark: pento	asilane has	stonger/	larger foi	rces of attr	raction.				
7.	Stronger intermolecular	2 nd Mark: forc	es of attro	actions ar	e intermo	lecular/bet	tween mole	cules			
7e	silicon chain	The longer the	: silicon ch er moleculi	ain, the gi es have st	reater th ronger in	e number o termoleculo	t atoms wi ar bonds bi	tnin the etween			
		molecules which	h raises t	he boiling	point of p	pentasilane	over tetro	isilane			
		gfm SiO2 = (1x2	8)+(2×16) =	28+32 = 6	0g						
		n o. of mol = $\frac{\text{mass}}{\text{afm}} = \frac{6}{60} = 0.1 \text{mol}$									
	3.1										
7f		7Mg + 2	SiO₂ +	14HCl	→ Si ₂	$H_6 + 7M$	$gCl_2 + 4$	IH₂O			
			2mol 0.1mol		1m 0.05	iol imol					
		gfm Si₂H ₆ = (2×28)+(6×1) = 56+6 = 62g									
		9111 0 121 10 - (2X)	mass - n	00.0 = 01	9 . ofm - 0.0	5mal x 62 -	3 10				
80	Eluonapatita	Problem Solving	extracting	informati	on from a		5.1 <u>y</u>				
ou	Tuorapatte	As there are no	metals in t	he formula	any order	of the non-	metal elema	ents is			
8b	C ₆ H ₁₂ O	acceptable altho	ough most t	end to list	C then H t	hen O.		2013 13			
8c (i)	Nitrogen	ADP has the forr elements for plar	nula NH4H2F 1t growth. T	°O₄ contains he 3rd esse	s nitrogen o ential eleme	and phosphoru ent for plant g	us. Both are growth is po	essential tassium.			
8c(ii)	Soluble	Fertilisers must phosphorus or p	contain at otassium ar	least one o Id be solubl	of the thre le in water	e essential e	elements nit	rogen,			
0.1	24.7	gfm H ₃ PO4 = (3>	(1)+(1×31)+(4x16) = 3+3	31+64 = 98	<u> </u>					
8d	31.6		% P =	nass of P gfm	$100 = \frac{3}{98}$	<u>1</u> 8 ×100 = 31.	6%				
8e	Filtration	Solid calcium su	lfate can be	e separated	d from a lic	quid by filtro	ition.				
٥t	1mol on 0 5mol		CaSO	.2H₂O		CaSO₄.≟H	2 0				
01	2001 01 0.0000		1mol	: 2mol		1mol ∶≟m	ol				
		heat energy =	specific he	at capacity	× mas	is 🗙 chan	ige in Tempo	erature			
0 ₀ (1)	0.627	E _h =	C		x m	×	ΔT				
JU (1)	0.027	E _h =	4.:	18	× 0.0)1 ×	15				
		E _h =	0.62	7 kJ							
	One from	No draft shield	Energ	y lost to surr	oundings	Temperatur	e not consiste	ent in water			
70 (ii)	Une trom:	Glass absorbs he	at Inco	omplete comb	oustion						

9b	150	1g bisco 30g bisco 4.18k 627 k	uit uit :J :J	release release equals equals	s 20. s 20. = 62 1 kilo = 1 kilo = 150 k	9 kJ 9 kJ x ³⁰ / 7 kJ ocalorie ocalorie x ilocalorie	⁶²⁷ /4.18	3	
10a(i)	electrolysis	As caesium i to extract c Method Metals Maa This Way Reason	is ma aesii de /	pre reactive um from its Electro Potassium Lithium Magnesium most react	than pota ore. olysis Sodium Calcium Aluminium ive metals	SSium then Heat W Zinc Nickel Lead medium re	electrol ith Cart Iron Tin Coppe active mo	lysis would b Don H Mercu Gold etals least r	e the method eat Alone ury Silver d Platinum reactive metals
10a(ii)	Reduction	Metal ores o	Metal ores contain metal ions which are reduced to produce metal atoms \mathcal{CS}^+ + $e^ ightarrow$ \mathcal{CS}						
10b(i)	0 -1e	Particle Symbol		Proton 1 1	Neutron 1 0	n Elect	ron 2	⁴ He	Beta 0 -1
10b(ii)	Alpha particles cannot pass through paper	Radiation Mass Charge Stopped by Deflection Use		Alp 4 2 Pap Towards Smoke de	ha er negative etectors	Be C 	Beta O -1 Aluminium Towards positive Weasuring thickness f paper in paper mill		amma mass charge ck lead efection rapy cancer atment
10b(iii)A	One answer from:	Time take sample to	en fo rad	or half the ioactively	atoms in decay	a Time sample	for the e to ha	e radioactiv If	ity in. a
10b(iii)B	<u> 15 </u> 16	Time 0 years 30 years 60 years 90 years 120 years	No. o	f half-lives 0 1 2 3 4	Fraction R 1 1/2 1/4 1/8 1/16	2emaining (100%) (50%) (25%) (12.5%) (6.25%)	% Rema % Decay % Rema % Decay	ining = $\frac{1}{16}$ yed = $1 - \frac{1}{16}$ = $\frac{15}{16}$ ining = 6.25% yed = 100% - = 93.75%	6.25%
11a	covalent molecular	Tungsten is All ionic com Tungsten(VI tungsten(VI	a me 1pour [) flu [) flu	etal. Metals nds are solic uoride is a g oride must	and non-m d at room t as at room be covaler	etal compou emperature temperatu it molecular	unds usu e. re and t [.] .	ually form ior this means th	nic compounds. nat
11b(i)	WF ₆ + 3H ₂ O → WO ₃ + 6HF		WI	≈ ₆ +	3H ₂ O	\rightarrow \	<i>NO</i> ₃	+ 6H	F
11b(ii)	concentration of hydrogen ions greater than concentration of hydroxide ions	Type F acid Cond neutral Cond alkali Cond	Relati centro centro centro	onship betwee ation of hydro ation of hydro ation of hydro	en Concentra ogen ions gr ogen ions ogen ions	tion of Hydro eater than equal to less than	gen ions c Concentro Concentro Concentro	and Hydroxide ation of hydro> ation of hydro> ation of hydro>	Ions kide ions kide ions kide ions
11c	W^{6+} + 2e ⁻ \rightarrow W^{4+}	When baland by adding to	cing (the	an ion-elect most positi	ron equations in the side of	on, adding e the equatic	electron: on.	s will balance	e the charge
12	Open Question:	3 mar Demonstrates understanding involved. A goo the chemistry logically correc statement of t involved and th these to respo	a good of the d comp has pr it, incl he pri he appl nd to	ISWER c chemistry prehension of rovided in a uding a nciples ication of the problem.	2 mc Demonstrate understandir involved, mak statement(s) to the situat problem is un	Irk answer is a <u>reasonable</u> g of the chemis ting some which are relev ion, showing that iderstood.	stry u ii vant s it the r t	1 mark Demonstrates a <u>li</u> understanding of involved. The cana some statement(s relevant to the si that at least a lit chemistry within understood.	answer mited the chemistry didate has made to which are tuation, showing the of the the problem is