

Past Papers Nat 5 Chemistry

2023 Marking Scheme

Grade	Mark R	equired	% condidated cabinating and
Awarded	(/100)	%	% candidates achieving grade
Α	+	%	%
В	+	%	%
С	+	%	%
D	+	%	%
No award	<	٠%	%

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	/25	/75	No Assignment in 2023

20	023	Nation	al 5	C	hemistr	Ϋ́	Mark	king	Sc	heme	
MC Qu	Answer	Reasoning									
1	D		Rate = $\frac{\Delta \text{Quantity}}{\Delta \text{Time}} = \frac{300 \text{ cm}^3}{60 \text{ s}} = 5 \text{ cm}^3 \text{ s}^{-1}$								
2	Α		Partion protoneutr	ton inside nucleus tron inside nucleus			Charge +1 0 -1	1 0	ass amu amu rox 0		
3	С	A CC 4 C C C C			B NCl3 Numcl Cl cl	C SCl₂ S	Cl	D FCI F			
4	В	⊠A Diagram sh ☑B Diagram sh ☑C Diagram sh	nows met nows ionio nows covo	allic b c bond alent m	mpound has metal onding (positive ion ing (positive ions al nolecular (separate network (long netw	ns sur nd neg mole	rrounded by c gative ions) ecules with co	delocalis ovalent b			
5	В	Fe Consideration of Fe Con) 2 Se = 2		Fe P 3 3 FeP ency of Fe = 3	va	Fe N 2 Fe(NO ₃)2 lency of Fe		F	PO ₄ ³⁻ 2 3 $e_3(PO_4)_2$ cy of Fe = 2	
6	D	Solution \Rightarrow value \Rightarrow v									
7	В	 ☑A aluminium oxide is insoluble ☑B barium oxide is a soluble metal oxide ☑C nitrogen oxide is a non-metal oxide ☑ dissolves in water to form pH<7 ☑ D hydrogen oxide H₂O is water with a pH=7 ∴ does not change pH of water when added 									
8	С	⊠B nickel does ☑C nickel sulfo	de + s + s roxide do : not prod ate is pro	sulfuri sulfuri bes not duce a oduced	c acid — → ni	ckel ckel hen r d with tions	h sulfuric ac	sulfuri cid	r ien ic acid	carbon dioxide	

9	В	$(Na^{+})_{2}CO_{3}^{2-}(aq) + 2H^{+}CI^{-}(aq) \rightarrow 2Na^{+}CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ Split solutions into ions $2Na^{+}(aq) + CO_{3}^{-}(aq) + 2H^{+}(aq) + 2CI^{-}(aq) \rightarrow 2Na^{+}(aq) + 2CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ $Identify \ Spectator \ Ions \ and \ cancel \ out \ Spectator \ Ions$ $2Na^{+}(aq) + CO_{3}^{-}(aq) + 2H^{+}(aq) + 2CI^{-}(aq) \rightarrow 2Na^{+}(aq) + 2CI^{-}(aq) + H_{2}O(l) + CO_{2}(g)$ $Re-write \ equation \ without \ spectator \ ions$ $CO_{3}^{-}(aq) + 2H^{+}(aq) \rightarrow H_{2}O(l) + CO_{2}(g)$ $Carbon \ number: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								
10	Α	$\begin{array}{c} \text{CH}_3\text{CH}(\text{CH}_3)\text{CH}_2\text{C}(\text{CH}_3)_2\text{CH}_3 \\ \uparrow \\ 1x \text{ methyl group} \\ \text{ on } C_4 \\ \end{array}$ $\begin{array}{c} \uparrow \\ 2x \text{ methyl group} \\ \text{ on } C_2 \\ \end{array}$ Name of compound: 2,2,4-trimethylpentane} \\ \text{NB: Overall formula is of alkane as formula } C_8\text{H}_{18} \text{ fits general formula } C_n\text{H}_{2n+2} \\ \end{array}								
11	C	\blacksquare A This structure is also 2-methylbut-2-ene but drawn differently \blacksquare B This structure has formula C_5H_{12} but 2-methylbut-2-ene has formula C_5H_{10} \blacksquare C Both have formula C_5H_{10} and have different structures \therefore isomers \blacksquare D This structure has formula C_6H_{12} but 2-methylbut-2-ene has formula C_5H_{10}								
12	В	\boxtimes A Addition of H ₂ across the C=C double bond in but-2-ene produces butane C_4 H ₁₀ \boxtimes B Butan-1-ol cannot be produced as -OH group must be added to C_2 to form butan-2-ol \boxtimes C Addition of H ₂ O across the C=C double bond in but-2-ene produces butan-2-ol \boxtimes D Addition of Br ₂ across the C=C double bond in but-2-ene produces 2,3-dibromobutane								
13	A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
14	۵	\blacksquare A methanol CH ₃ OH has a lower formula mass compared to octan-1-ol C_8 H ₁₇ OH \blacksquare B CH ₃ OH has a higher solubility than C_8 H ₁₇ OH as methanol has a shorter carbon chain \blacksquare C methanol CH ₃ OH has a lower formula mass compared to octan-1-ol C_8 H ₁₇ OH \blacksquare D methanol CH ₃ OH has a lower formula mass and higher solubility than octan-1-ol C_8 H ₁₇ OH								
15	D									
16	C	Acid + Metal Oxide → Salt + Water methanoic acid + sodium oxide → sodium methanoate + water								
17	A	 ☑A conducts as solid and liquid ☑B does not conduct as solid or liquid and has low m.pt. and b.pt. ∴ covalent molecular ☑C conducts as liquid but not solid ☑D does not conduct as solid or liquid and has high m.pt. ∴ covalent network 								
18	В	 ☑ A Y is least reactive as it is only metal not to react with acid. (Least reactive comes first in list) ☑ B Y is least reactive and Z is most reactive ∴ Y then X then Z ☑ C Z is most reactive as it is only metal to react with water. (Most reactive comes last in list) ☑ D Z is most reactive as it is only metal to react with water. (Most reactive comes last in list) 								

©JABchem 2023 3 2023 Nat5 Marking Scheme

19	D	 ☑A Nickel(A) is lower than zinc(B) in Electrochemical series so electrons flow from B to A ☑B Zinc(A) is lower than aluminium(B) in Electrochemical series so electrons flow from B to A ☑C Aluminium(A) is lower than magnesium(B) in Electrochemical series so electrons flow from B to A ☑D Aluminium(A) is higher than nickel(B) in Electrochemical series so electrons flow from A to B 									
20	A	Mg ²⁺ ions and	I Ag⁺ ions will of Oxidation Reduction Oxidation	Mg(s) 2Ag ⁺ (aq) +	silver atoms	s in a redox r	eacti	on. - -			
21	C	Process Haber Ostwald	Nitrogen	tants + Hydrogen a + oxygen	A Ni	mmonia tric acid		Catalyst Iron Platinum			
22	С	²²⁷ Th -	→ 223 Ra	→ 219 86 R	$an \stackrel{\alpha}{\longrightarrow}$	²¹⁵ ₈₄ Po —	$\stackrel{\alpha}{\longrightarrow}$ 2	¹¹ ₃₂ Pb			
23	C	⊠B Lead(II) s ☑C Calcium ch	 ☑A Barium sulfate is insoluble and can be collected in a precipitation reaction by filtration ☑B Lead(II) sulfate is insoluble and can be collected in a precipitation reaction by filtration ☑C Calcium chloride is soluble so will not form a precipitate ☑D Silver Chloride is insoluble and can be collected in a precipitation reaction by filtration 								
24	A	⊠B Starch is ⊠C Flame tes	☑A Glucose gives blue to orange with Benedict's and sodium chloride gives yellow flame test ☑B Starch is not present as there was no change in the iodine test ☑C Flame test gave yellow flame but strontium chloride would give a red flame test result ☑D Starch is not present as there was no change in the iodine test								
25	В		2NaOH 2mol 0.004mol	+ H ₂ SO ₄ 1mol 0.002mol	→ Na ₂ ;	5O ₄ + 21	H ₂ C)			

202	3 Nationa	15 C	he	mis	str	y	Ma	rki	ng	5	che	zm	e
Long Qu	Answer		Reasoning										
1a	7	Diatomic Elen Formula	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
1b	35	Chlorine 3	5 is th	ie comm	on isoto	pe in	sample	as the	avera	ge is cl	loser to	35 tl	han 37
1c	One from: Fluorine Bromine Iodine Astatine		Elements in the same chemical group have similar chemical properties due to having the same number of outer electrons.										having
1d	10	²⁴ Mg	No. of protons = atomic number = 1 No of neutrons = mass number - atomic number = $24 - 12 = 1$ No of electrons = atomic number - charge = $12 - (2) = 1$									= 10	
10	20	³⁷ Cl-	ı	No. of p No of ne No of el	eutrons	= ma	ss numl	oer – at					= 17 = 20 = 18
2a	Hydrocarbon	A hydroca	rbons	is a com	pounds	conto	aining c	arbon a	nd hy	drogen	only.		
2b(i)	Hydrogen				C ₂ H ₆	₅ —	→ C	2H4	+ +	12			
2b(ii)	decolourises bromine solution	Unsaturate Bromine ad	dds acı	ross the	double	bono	d in eth	ene to	form 1	,2-dibr		nane	
2c(i)	$H-C\equiv C-H$	Carbon has Hydrogen		•				•			atom		
2c(ii)A	carbon dioxide and water	Ethyne is a hydrocarbon containing only carbon and hydrogen atoms. Complete combustion of carbon produced carbon dioxide. Complete combustion of hydrogen produced water.											
2c(ii)B	Gives out heat	Exothermi Endotherm						-	•				_
3a	Group 2	Only Group The remain				•	•					•	gen.
			Writ	e down Sy I valency b	mbols	Cro		arrows	Work	out chem		ıla	
3b(i)	KMnO ₄		K 1	Mn	O ₄ -	K 1	M	nO4 1		K r	104		
		Observo	ition		nding e light		Brigh light			d glow ew spar	alec	Dul red g	
3b(ii)	Aluminium	Meta		Magr	nesium		X	•		ron .	N3	Сорр	er
3 D (II)	or zinc	Reactive Conclusion ∴ 2 possib	: X mu	st have				Magnes	sium ai	nd Iror	1	→ Lo	W
3c	Hydrogen	Gas Hydrogen Oxygen Carbon Dioxid											
3d(i)	Burns with a pop Voltage between 0.5 and 2.7	As Iron is an iron/coptin/copper	betwe	_	nesium a	nd ti	n on th		rocher	nical se		ne vol	tage of
S (7/::)	Electrically conducting solutions containing ions	An electro	lyte is			ng so	lution v	vhich co	mplet	es the	circuit	in a c	ell and

									I			
3d(iii)	one answer from:	Il temperature I concentration I ''			Type o		Distance between Surface are electrodes of electrode					
4a	From air	Problem Solving: Extracting information from a passage										
4b	Lowers temperature or don't get used up	• •	A catalyst speeds up a chemical reaction but does not get used up in the reaction. This often means that a chemical reaction can proceed at a lower temperature.									
4 c	534.1	1 litre jet fuel made from 4700g CO_2 5 litres jet fuel made from 5x4700g CO_2 = 23500g CO gfm CO_2 = (1x12)+(2x16) = 12+32 = 44g no. of mol= $\frac{\text{mass}}{\text{gfm}}$ = $\frac{23500}{44}$ = 534.1mol										
		3 mark o	answer		2 mark a	nswer		1 m	ark ansv	ver		
5	Open Question:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a to 1			Demonstrates a <u>reasonable</u> Inderstanding of the chemistry Involved, making some Itatement(s) which are relevant To the situation, showing that the Iroblem is understood.			Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				
6a(i)	carboxyl group		O O O O O O O O O O									
6a(ii)	Addition Polymerisation	C=C double bonds in monomer open up and join together to form polymer										
6a(iii)	Polymer diagram:	СООН <							COOH C- J Q Unit			
6b(i)	CsCl and Material A	Problem Solving	g: Prediction	of va	lue and cor	npletio	n of b	oar graph				
6b(ii)	Bar bigger than 18 and lower than 32	As strontium is for SrCl2 would						n group 2,	the prec	liction		
6c(i)	measuring cylinder or pipette	Beakers are loof liquid. Pipe volumes.							_			
6c(ii)	Line Graph Showing:	araph which	ark is the axis/axes of the graph has/have suitable scale(s). which points rather least half of the width and half of the height of the				ark xes of graph live able s and lits.	1 mark All data points plotted accurately (within a half be tolerance) with either a li of best fit drawn or plots joined by curve. This mark can only be accessed if lir scales for both axes have been provided.		half box er a line plots s mark l if linear		
7a	Trisilane	Prefix Mon	o- Di-	Tr			nta-	Hexa-	Hepta-	Octa-		
7b	Si ₅ H ₁₂	Meaning 1 General Formul For pentasilane	a of silanes , n=5 ∴ 2n+2	is Si _n l 2 = (2)	1 _{2n+2} in line	with a	alkane	s C _n H _{2n+2}	/	0		

		Compound Monosilane Disilane Trisilane Tetrasilane Pentasilane Hexasilane									
		Formula SiH ₄ Si ₂ H ₆ Si ₃ H ₈ Si ₄ H ₁₀ Si ₅ H ₁₂ Si ₆ H ₁₄									
7c	185	Boiling Point (°C) -112 -15 53 108 153 -									
, 0		Difference 97 68 55 45 (35)									
		Prediction (°C) - - - - 185									
7d	One diagram from:	H Si H or H Si H									
		1st Mark: pentasilane has stonger/larger forces of attraction.									
7e	Stronger intermolecular forces due to longer	2 nd Mark: forces of attractions are intermolecular/between molecules									
16	silicon chain	The longer the silicon chain, the greater the number of atoms within the molecule. Bigger molecules have stronger intermolecular bonds between									
		molecules which raises the boiling point of pentasilane over tetrasilane									
		gfm $SiO_2 = (1\times28)+(2\times16) = 28+32 = 60g$									
		$\mathbf{no.} \text{ of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{6}{60} = 0.1 \text{mol}$									
	3.1	744 00:0 441:0 0:11 7:10									
7f		$7Mg + 2SiO_2 + 14HCl \longrightarrow Si_2H_6 + 7MgCl_2 + 4H_2O$									
		2mol 1mol 0,1mol 0,05mol									
		gfm Si ₂ H ₆ = (2×28)+(6×1) = 56+6 = 62g									
		m ass = n o. of mol × gfm = 0.05 mol × $62 = 3.1$ g									
8a	Fluorapatite	Problem Solving: extracting information from a passage									
8b	C ₆ H ₁₂ O	As there are no metals in the formula, any order of the non-metal elements is acceptable although most tend to list C then H then O.									
8c(i)	Nitrogen	ADP has the formula NH ₄ H ₂ PO ₄ contains nitrogen and phosphorus. Both are essential elements for plant growth. The 3rd essential element for plant growth is potassium.									
8c(ii)	Soluble	Fertilisers must contain at least one of the three essential elements nitrogen, phosphorus or potassium and be soluble in water.									
0.1	24.4	gfm $H_3PO_4 = (3\times1)+(1\times31)+(4\times16) = 3+31+64 = 98g$									
8d	31.6	% P = $\frac{\text{mass of P}}{\text{gfm}} \times 100 = \frac{31}{98} \times 100 = 31.6\%$									
8e	Filtration	Solid calcium sulfate can be separated from a liquid by filtration.									
8f	½mol or 0.5mol	$CaSO_4.2H_2O$ $CaSO_4.\frac{1}{2}H_2O$ $1mol:2mol$ $1mol:\frac{1}{2}mol$									
		heat energy = specific heat capacity × mass × change in Temperature									
		$E_h = C \times m \times \Delta T$									
9a(i)	0.627	$E_h = 4.18 \times 0.01 \times 15$									
		$E_h = 0.627 \text{ kJ}$									
0.5411	0.00	No draft shield									
9 a (ii)	One from:	Glass absorbs heat Incomplete combustion									

9b	150	1g biscu 30g biscu 4.18k 627 k	uit release J equals J equals	25 20. = 62 1 kilo 5 1 kilo = 150 k	9 kJ × ³⁰ / ₁ 7 kJ ocalorie ocalorie × ⁶²⁷ / ₂ ilocalorie ssium then electi		would be	: the method
10a(i)	electrolysis	to extract c Method Metals Mac This Way Reason	II Lithiim I	olysis Sodium Calcium Aluminium	1	on in per	Mercu Gold	
10a(ii)	Reduction	Metal ores o			$e^- ightarrow C$		netal ato	ms
10b(i)	°-1	Particle Symbol	Proton 1 p	Neutroi 1 0	e Electron		_{Ipha} He	Beta 0 -1
10b(ii)	Alpha particles cannot pass through paper	Radiation Mass Charge Stopped Deflecti	by Par	t Der negative	Beta 0 -1 Aluminium Towards positive Measuring thickness of paper in paper mil		Gamma No mass No charge Thick lead No defection Radiotherapy cancer treatment	
10b(iii) <i>A</i>	One answer from:		n for half the radioactively			he rac	dioactivi	ty in. a
10b(iii)B	<u>15</u> 16	Time 1 0 years 30 years 60 years 90 years 120 years	No. of half-lives 0 1 2 3 4	Fraction R 1 1/2 1/4 1/8 1/16	(100%) % Dec (50%) (25%) % Rer	maining cayed	= 1/ ₁₆ = 1 - 1/ ₁₆ = 15/ ₁₆ = 15/ ₁₆ = 6.25% = 100% - 93.75%	
11a	covalent molecular	All ionic com Tungsten(VI	pounds are soli	d at room t gas at room	temperature and	·		·
11b(i)	WF ₆ + $3H_2O \rightarrow WO_3 + 6HF$	•	WF ₆ +	3H ₂ O	→ WO	3 4	+ 6H	F
11b(ii)	concentration of hydrogen ions greater than concentration of hydroxide ions	acid Cond		ogen ions gr ogen ions	•	tration tration		ide ions ide ions
11c	$W^{6+} + 2e^- \rightarrow W^{4+}$		ing an ion-elect	•	on, adding electr the equation.	ons wil	l balance	the charge
12	Open Question:	Demonstrates of understanding involved. A good the chemistry logically correct statement of the involved and the	k answer a good of the chemistry d comprehension of nas provided in a t, including a	2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant 1 mar Demonstrates understanding involved. The a some statement some statement				the chemistry idate has made which are uation, showing le of the